1·You pick two huge prime numbers "p" and "q."
首先 选择两个很大的质数“p”和“q”,并对他们求积得到“n=p*q”。
2·This is where prime Numbers come into play.
这是因为质数在起作用。
3·It is easy to find examples in the theory of prime Numbers.
很容易在关于质数的理论中找到例子。
4·Prime Numbers are those divisible only by one and themselves.
素数整除的是那些只有一个和自己。
5·That is impressive because those are three consecutive prime numbers.
这是令人印象深刻的,因为7、11和13刚好是三个连续的素数。
6·This is because there are comparatively many more non-prime Numbers than primes.
这是因为非素数比素数多得多。
7·Many numbers, even some prime numbers, if they are not even, they still feel "round.
许多数字,甚至是一些质数,只要它们不是偶数,也让人感觉相当“圆满”。
8·However, one can find such a pair of prime Numbers, if any, for a given even number.
但是,如果对于给定的一个偶数,存在这样一对素数的话,人们是可以找到的。
9·Every positive integer greater than 1 can be expressed as the product of prime Numbers.
每个大于1的正整数都能表示为素数的乘积。
10·page you’ll see a number of different parameters for determining how to generate prime numbers.
在primes.jsp页面中,你会看到很多用于质数生成的不同参数。